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In order to extend the calculations of the isoplanatic aspects of
predetection compensation to include results for ground-based
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Summary

This report presents the more significant and complete results
tv date on a program of theoretical study related to unconventional imagery
and techniques for suppression of atmospheric turbulence effects on image
quality. The objective of this work has been to develop an under standing
and quantitative theory of those aspects cf propagation through atmospheric
turbulence that would limit the performance of unconventional imagery
techniques, and to develop a basis for quantifying the effective magnitude

of atmospheric turbulence.

In this report, we present results of an analysis of the isoplanatic
aspects of predetection compensation imagery. We have developed formal
theoretical results for how the achievable modulation transfer function for
predetection compensation varies with the angular size of the image, or
with the angular separation between the image and the reference sourcec.
Detailed evaluation is carried out for propagation over a path with uniform
optical strength of turbulence along the path (nominally a horizontal path).
It is found that for propagaticn along a horizontal path of length z , if the
wavelength and strength of turbulence are such as to result in a coherence
length r, , then the angular separation between the image and the refer-
ence must be less than ¥, = r,/22z if predetection compensation is to

produce useful imagery of fine details.

In order to extend the calculations of the isoplanatic aspects of
predetection compensation to include results for ground-based viewing of
space objects, it is necessary to have a model for the vertical distribution
of the optical strength of turbulence. We have generated such a model,
making use of the low altitude aircraft thermal probe measurements of

Koprov and Tsvang, and the high altitude balloon thermal probe data of
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Bufton. The model is presented in terms of a table of numerical values,
along with a discussion of the data processing details by which the model

was extracted from the available raw data.

As part of the problem of measuring the optical effects of turbu-
lence over finite non-horizontal propagation paths, such as between an
aircraft and the ground, this report considers the possibility of using
differential angle of arrival m~asurements. The advantage of this type
of measurement is that it allows tracking of a point source and measures
wavefront distortion in terms of (differential) angle of arrival at two sub-
aperture ., on the same mount, giving meaningful results without placing
significant constraint on the tracking accuracy of the mount. Significantly,
the basic equipment for this type of measurement is available at RADC.
The questions to be answered by theoretical analysis are how does the
mean square differential angle of arrival vary with separation of the two
subapertures, and is the expected value for the largest achievable sepa-
ration great enough compared to equipment measurement precision to
allow for meaningful measurements. These questions are answered in
this report. The dependence is evaluated and tables of results are pre-
sented. It is found that measurement accuracies are adequate to allow

propagation path characterization with modest (i.e., 5% to 10%) precision.

iv

s




Abstract

Chapter I

|
F
|
|
:
E Summary

Chapter II

Chapter III

TABLE OF CONTENTS

Isoplanatic Aspects of Predetection
Compensation Imagery

Intr oduction

Predetection Compensation

Analytic Problem Definition

Representation for M()\'f',3)

Propagation Statistics

Preliminary Reduction of M(\T,3)

Reduction of 773()\?,3) for Horizontal
Propagation

Discussion of Results

References for Chapter I

A New Model for the Vertical Distribution of
the Optical Strength of Turbulence in the
Atmosphere

Presentation
References for Chapter II

Differential Angle of Arrival: Theory,
Evaluation, and Measurement Feasibility

Introduction

Problem Definition and Formulation
Formulation Reduction

Numerical Evaluation

Discussion of Results

References for Chapter III
Appendix A of Chapter III

Appendix B of Chapter III

e b o b s e kLl o e

—
DD o= 00 B W

18
22

36

37
40

46

47
49
51
56
57
59
60
63




TABLE LIST

Table I.1

Table I. 2

Table 1.3

Table II.1
Table II. 2
Table III. 1
Table IIL 2

Figure IL 1
Figure IL 2

Figure IL 3

Dependence of ¥, and A/r, for Horizontal
Propagation

Computer Program Listing for Evaluation of

I(f/fo)¢) and Iggyu(f/f0’¢)
Computer Printout for I(f/f,,¢) and I (£/1,,9)

Bufton's Flight Data -- Smoothed and Averaged

asyn

Bufton's Flight Data -- Adjusted Averages
Computer Program Listing

Calculated Values for I(/,y)

FIGURE LIST

Bufton's Thermal Probe Data, Flight #9

Low Altitude Thermal Probe Measurement of the
Refractive-Index Structure Constant.

High Altitude Thermal Probe Measurement of the
Refractive-Index Structure Constant.

vi

23
25
41
42
64
65

43

44

45

]
5




ABSTRACT

In Chapter I, the concept of predetection compensation imagery is
defined and a formal analysis of the effects of atmospheric turbulence on
the compensated image MTF is set up. An expression is obtained for the
MTF in terms of an integral over the propagation path., The integrand is
a function of the refractive-index structure constant, the image frequency,
f , the angular separation between the target object and the reference
source, ¥ , and the angle, ¢ , between the vector aspects of f and ¢ .
For horizontal propagation, it is found that two parameters can be defined
which govern the quality of the compensated MTF. These are ¥, , the
Predetection compensation critical angle, and fy , the transition frequency.
We find that for image frequencies below fo , there is no useful compen-
sation, in fact we suffer an effective doubling of the strength of the turbu-
lence. (However, if fo is small enough, this is of no consequence.) For
image frequencies greater than fs , the MTF is down from diffraction-
limited by no more than a factor of exp [-2.58 (/9,F®] . So long as »
is made less than §, , the compensation will be quite effective. Expres-
sions obtained for §, and f, are #§,= r,/2z and fo=20z/\ , where z
is the path length and r, is the critical coherence length for conventional
long exposure imagery.

In Chapter II, medium and high altitude thermal probe data by
Bufton, and low altitude thermal probe data by Koprov and Tsvang are
processed to provide a smooth distribution for the refractive-index struc-
ture constant in the atmosphere. The model is used to calculate the
critical length for diffraction-limited imaging, i.e., r, , and the log-
amplitude variance, i.e., cf . Comparison with measured values shows
very good agreement for 1, , and only fair agreement for oza c

In Chapter III, the problem of measuring differential angle of arrival
through two relatively small apertures of variable separation is considered.
The motivation is to evaluate the practicality of a measurement program
using such a quantity to observe atmospheric turbulence wavefront distor-
tion effects when one end of the link is moving and can not be tracked pre-
cisely., Theoretical results for the mean square diiference in angle of
arrival are developed. Numerical results have been calculated using a
computer. Comparison of expected magnitude of effects with available
measurement instrument precision indicates that the experiment should
be possible, but will depend on our ability to achieve an rms single axis
angle of arrival measurement precision of the order of 0.1 arc seconds
or better.
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Isoplanatic Aspects
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Introduction

The concept of isoplanatism refers to the fact that over some size
field-of-view the image of an object will suffer the same degradation from
diffraction-limited quality, independent of where the object is within that
field-of-view. It is common usage to refer to the field-of-view as the
isoplanatic patch. As thus defined, the concept of isoplanatism refers
basically to the performance of a lens or mirror imaging system. How-
ever, this same concept can be applied in discussing the effect of atmos-
pheric turbulence on an otherwise ideal imaging system. It is in this

context that we shall consider the subject of isoplanatism.

Before proceeding farther, we wish to make certain disclaimers

and place certain bounds on the extent of the problem we shall be treating.

First of all, we call attention to the fact that it is by no means clear, or
even likely that atmospheric turbulence induced resolution effects will be
strictly constant over any non-trivial size field-of-view. Rather, itis
likely that whatever resolution variation there is over the ficld-of-view
will show a monotonic dependence on the size of the field angle. We could
define the isoplanatic patch as being determined by the size of the field
angle that makes the variation just reach some (arbitrarily chosen) level
of significance. However, rather than engage in a matter of such arbitrary
nature, we shall simply seek knowledge of the field-angle dependence,
which we shall refer to as the isoplanatic dependence of resolution, and

avoid, as much as possible, discussion of the size of the isoplanatic patch,

Secondly, we wish to take note of the fact that there are a variety
of distinct conventional and unconventional imaging techniques presently
being considered for imaging through atmospheric turbulence. Each of these
techniques functions in a different manner and is sensitive to somewhat dif-
ferent aspects of the optical effects of atmospheric turbulence. There is,
therefore, no reason to believe that the isoplanatic dependence of any two

of these techniques will be the same. In this paper, we shall be considering




one of the more interesting of the unconventional imaging techniques,
which we refer to as predetection compensation. There is no assur-
ance that the isoplanatism dependence that we shall develop in this paper
for predetection compensation imaging will be applicable to any other
imaging technique, and we caution the reader against assuming that this
result necessarily is relevant to any of these other techniques. (At a
later time, we hope to extend ovur work to cover some of these other

techniques. )

Predetection Compensation

Predetection compensation is the generic term used to describe
any one of a number of techniques that seek to estimate, in real time,
the nature of the atmospheric turbulence induced wavefront distortion
at the imaging system's collection aperture, and in real time compensate
for the wavefront distortion. In this way, the image as formed is com-
pensated for turbulence effects, (The term 'predetection compensation'
is perhaps best understood in juxtaposition to the term '"'postdetection
compensation. " Postdetection compensation is the process of correcting
the distorted image after it is formed, by some form of modulation ‘rans-

fer function compensation, or by some more or less equivalent technique. )

The key to predetection compensation lies in two areas. The first
of these is the ability to in real time estimate the nature of the phase dis-
tortion and perhaps also the intensity variation at the aperture. The second
key is the ability, in real time, to modify the optical system so as to cor-
rect for the phase, and possibly also the intensity variations, so that the
corrected optical signal contains only the information descriptive of the
object being viewed. Techniques are under development by several organi-
zations aimed at demonstrating both of these capabilities and producing a

predetection compensated image.

It would be beside the point to go into the details of the techniques

that are being considered. Our concern here is with the evaluation of one




potential limitation in the predetection compensation concept. This limita-
tion relates to the isoplanatic aspect of the process. We are concerned
with the fact that in order to estimate the phase and intensity variations,
all techniques that have been proposed require the observation of a refer-
ence source. The estimated variation is then used to correct the wave
coming from some point on the object of interest. In general, the field
angle associated with the reference source will not be identical to the

field angle for the point on the object we are imaging. Our concern is to
develop a quantitative understanding of how the angular separation between
the reference source and the point being imaged affects the resolution of
the compensated image. We consider this to be the problem of isoplanatism

for predetection compensated imagery,.

Analytic Problem Definition

For the purposes of analysis, we shall consider the problem of
predetection compensated imaging of a point target source at field angle
_9'1 » using a point reference source at field angle 32 . We shall study
the ensemble average modulation transfer function for the predetection

compensated target image, s (?)) , at image frequency T (in cycles

~er radian field-of-view), as a function of the angular separation

§ = 8 -%, . (1)

In many propagation situations, intensity variations are minor,
i. e., the log-amplitude variation is much less than one neper, and so

there is no great utility in correcting for intensity variations. Only phase

variation correction would be of concern. In other propagation situations,

however, intensity variations could be sizable, and it would be necessary
to utilize intensity compensation in order to obtain a well compensated
image. While such compensation is somewhat more difficult than phase

compensation, there is nothing fundamental that prevents such compen-

sation from being utilized. In all cases, the use of intensity compensation
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along with phase compensation will give at least as good, if not a signi-
ficantly better compensated image than would the use of phase compen-
sation alone. Consequently, to investigate the §-dependence of the pre-
detection compensated image, we shall treat the case in which both phase

and intensity variations are corrected.

We shall use the notition £(x,%,) and ¢(x.8,) to denote the instan-
taneous turbulence induced variation of log-amplitude and phase, respec-
tively, at a point X on the collection aperture plane, for a wave coming
from the point target source at 31 . Similarly, we shall use 1,(32,'52) and
¢(§,§2) to denote the same quantities for the wave coming from the point
reference source at 32 . In predetection compensation, we form estimates
of 1,(;':,_9'2) and ¢G{',32) , which we shall assume for the purpose of this
analysis are perfect estimates, and correct the received wave from the
target accordingly. This means that we form our image using a wave with

residual log-amplitude and phase errors at x , given by

be(%,8) = 4(%,8)) - £(%,8) , (2a)

8 (8) = 6(x5,) - 0 (x,5,) : (2b)
respectively. If there were no field angle dependence, so that 1,(;{’,70’1)
exactly equaled 1,(;,70'2) and ¢(§,31) exactly equaled ¢GE,_9'2) , then the
residual errors would be zero and the predetection compensated im age
would be ideal. However, to the extent that isoplanatism is less than
perfect, the residual errors will be non-zero and the predetection com-

pensated image will be less than ideal.

The calculation of the modulation transfer function now proceeds
in almost exactly the same manner we have utilized previously* for calcu-
lation of the long exposure MTF for conventional imagery. If we let U(X)

denote the scalar form of the compensated electromagnetic field at aperture

position X , and let u(y) denote the associated image scalar form of the




electromagnetic field at the position ¥y in the focal plane, then it is well

known that
uy) = A [ dxX U) exp (-ikX - ) ; (3)

where A is a constant of proportionality and k = 2n/) is the optical wave
numb~r. (Here and throughout this paper integrals without explicitly stated
limits are to be understood as being dcfinite integrals with infinite limits.
In Eq. (3), the effective limits of the integration are provided by the fact
that U(x) vanishes for x outside the limits of the collection aperture. )
The instantaneous power distribution in the focal plane is proportional to
Iu(g;)l2 . Since the MTF is just the fourier transform of the impulsc

response, which [u(x)|?2 re resents, we can write for the MTF at image
P P g

frequency T

Twe(f) = B [dy |u¥@)|? exp 2niT - 7) ; (4)

where B is a normalization constant chosen to make Tepe (0) =1

If we combine Eq.'s (3) and (4), we get

Twe @) = A2B [[[ dy dx dx’ U*(X') U(X) exp [Zni? : (?+ f %)] . (5a)

Noting that carrying out the ;;-integration gives rise to a delta function

which then allows the X -integration trivially, we get

Twe@) = A*B [ dx U - XT) U(x) : (5b)

Now intr nducing W(;) to define a circular aperture of diameter D

’

according to the equation

1, if |x| s $D

W(x) = , (6)

I-)

xl >§D




we can write the compensated scalar field at the aperture, U(X) in

terms of the compensated log-amplitude and phase errors a4(x,5) and

8¢ (x,3), respectively. We have

U(x) = W(x) exp [A2(X,5) + i8¢ (x,3)] ; (7)

and if we substitute this into Eq. (5b), we get

Troe @) = A2B [ d& W(x - A7) W(X) exp {[aL(x,3) + 84(E-2T,F))

+i [ap(x) - ap(x-AT,5)]) . (8)

The ensemble average predetection compensated modulation transfer

function can now be written as
(Troc(@)) = A2B [ d% W(x-AT) W(x) (exp ({84, F) + 84(x-2T, )]
ti[a0(,3) - E-ALHIY . (9a)
Since the wavefront distortion statistics are homogeneous so that the

ensemble average on the right hand side of Eq. (9a) is not actually a func-

. - .
tion of x , we can write

(T @)Y = Ty () M(AT,3) , (9b)

where 7, (f) is given by the expression

T {f) = A2B [ dx W(x-2f) W(x) , (10)

and is, as we shall see, the MTF of a diffraction-limited circular aperture

of diameter D . M()\T,S) is given by the expression

POy epp—




The integral on the right hand side of Eq. (10) can be recognized as the area
of overlap of two circles of diameter D whose centers are displaced a

distance A . Making use of a little trigonometry, it is easy to show that

wine 2 {eor (5@ 1-A5

where we have anticipated the fact that M(0,8) is equal to unity and adjusted
the normalization constant B so that the MTF will have unity value at f = 0
We recognize m, (f) in Eq. (12) as being the well known expression for the
MTF of a diffraction-limited optical system with a circular aperture of

diameter D .

Our problem at this point is reduced to evaluation of M(\T,3) .
To the extent that this quantity equals unity, the predetection compensated
modulation transfer function is ideal, and to the extent that it deviates from
unity (we shall see that it is always less than or equal to unity), the pre-
detection compensated modulation transfer function is less than ideal. The
balance of the analysis in this paper is devoted to the evaluation of M(X,3) .
In the next section, we develop an expression for M in tefms of quantities
describing optical propagation statistics, and in the section after that, we

treat the propagation problem to obtain a formulation of these statistics.

Representation for M()\?, 3)

In order to reduce the right hand side of Eq. (l11), we start by
noting that if o and B are independent gaussian random variables, each

with zero mean value, and if a and b are arbitrary constants, then it is

easy to show that

MO\, 3) = Cexp {[82(x,5) + 84 (x-2T,5)] + i[00(x,5) - 2T, 51}) . (1)
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(exp (aa + bB)) = exp [# (a®(43) + bP (B3))] . (13)

Because the log-amplitude 4 and the phase ¢ are themselves gaussian,

it follows that the compensated log-amplitude error A4 and the compensated

phase error A&p are each gaussian. It follows from consideration of Eq.'s

(2a and b) and the fact that the propagation statistics are stationary in terms

of the field angle dependence (in this case, 31 and —éz ) that Af and A¢

both have zero mean value. It can be shown, using the fact that the propa-

gation statistics are isotropic, that the quantities [p2(%,5) + AL (x-AT, )]
and [AQSGE,{?’) - A¢G<'-)\?,3)] are independent. Obviously, then, Eq. (13)

can be applied to the evaluation of, the right hand side of Eq. (11). We get

M(A\T,S) = exp (& ([84(%,5) + be(%-2T,5)]? )

- ([@(x5) - M(E-T,5)]2)) : (14)

In order to reduce the terms in the exponent, we introduce the two

|[ structure function related statistical quantities

QIG,;?.) = ([J?,G(,—él) . I«G?t-é.l)][!z(;{;-é)a) i L(’E”ag)]> ’ (lsa)

Dy (6,5) = ([p (%, 8,) - 8(x,8)1[6(x.B,) -0 (. 8)]y (15b)

We shall refer to these two quantities as the log-amplitude and the phase

hyperstructure functions., (In the limiting case of 61 = _9’2 so that § = 0

L

the hyperstructure functions reduce to the ordinary structure functions, )




If we make use ot Eq. (2b), we see that the phase dependence

in Eq. (14) can be written as

([80(%,3) - M (x - 2T,3)]?)
= {{[¢(x,8,) - 8(x,6,)] - [¢(Z-AT,8,) - 8 (x-AT,68,)1F)

e d

({[#(%8) - 8GE-2T,8))] - [0 8) - 8G-AT. 6)1°)

2 [, (A, 0) - By (AT, )] : (17)

Reduction of the log-amplitude dependence in Eq. (14) is somewhat more
complex. It is most conveniently accomplished by introducing the log-

amplitude hypercovariance function

5,63 = (468 - 114, - 2D) : (18)
where
4= (D) : (19)
It is easy to show that
(TL2GL8Y) - 481 = [4(X,8) - 2. 8)13°)
=4 {[6,(0,0) - §,(0,9)] £ [5,(s,0) - 46,(5,5)

-2 68,00, -5)7) . (20)

By making use of Eq. (20), we can write the log-amplitude dependence of

the exponent in Eq. (14) as
([84(x,8) + 82(x-21,8)72)

= ({28 - £(x,6)] + [2(x-2T,8)) - 1(X-2T,8)133)

0L
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- {206 8,) - 2GLE)) - [T, 8 - 4E-TL 80192

+8[§,(0,0) - 5,(0,5))

- ([ 2(x,8)) - 1(G-AT,8))] - (4%, 8) - 22T, 80712

+ 8 [§,(0,0) - rsz(o,i‘s’)]

- 2[D, (AT, 0) - DLAT, )] + 8[§,(0,0) - 5,(0,5)] . (21)
Now if we substitute Eq.'s (17) and (21) into Eq. (l4), we get

M(AT,5) = exp {- [D4(AT, 0) - D,(0T,F)] + 4 [6,(0,0) - §,(0,5)]

S [%()\?, 0) - SD¢('A?.3)]}

where we have dropped the §,(0,0) - 52(0'3) dependence in the exponent
since it does not rcpresent an image frequency depender.ce. Its contribu-
tion is multiplicative and is absorbed into the normalization constant B

in going from Eq. (9a) to Eq. (9b). (As we shall see, dropping this

€-dependence insures that M(AT,s5) will have unity value for T = 0.) Eq. (22)

represents the end point of this section -- a representation of M()\?,S’) in

R R Y T S P e,

terms of the propagation statistics. In the next section, we take up the prob-

lem of calculating these statistics. J

Propagation Statistics 3

The problem of calculating the propagation statistics associated with
the hyperstructure functions has been treated previously.? The published

results can be written in the form

S _ 8.16k  f . I
592(5-19) S\ J'dv C2 j‘ do [l - exp (i 7)) o2¥/a
0

X [cos (25 Sv) - cos (v o2 /k)] ] (23a)



A IR 8. 16 k2 z 2 o d . End -11/3
®¢(p,0)— ——4112 J‘ dv G, J‘do[l -exp(io- p)]o
¢}

x [cos (25 + §v) + cos (v o2/k)] : (22h)

The G-integration is understood to be two-dimensional, in the plane per-
pendicular to the z-axis. ( C® , of course, denotes the refractive-index

structure constant, and k = 2n/\ is the optical wave nurnber, )

If vve substitute these results into Eq. (22), we see that we can
write
M(O\T,5) = exp [ - n(\F, 3 : (24°)
where

z
— - .1 <2 —> e —>
nnt,s) = ‘—8 Z:Ek“ f dv G2 J‘ do[1-exp(ig- AT)) g-il/3
0

X[1 - cos (20« $v)] ! (24)

Our problem at this point is the reduction of ML, $) to numerical results.

We take this up in the following sections,

Preliminary Reduction of o (AT, 5)

Without having to make any assumptions as to the nature of the
distribution of G2 along the propagation path, we can carry out the

_g-integration. To do this, we first rewrite Eq. (24) in the form

2
m\f,§) = %ki f dv G2 f do o-11/3 {1 -exp(ic* AT) |
(o}

- % exp (2i5 . §v) - # exp (-2 ig . 3\,)

tdexp[ic-(\T +25v)] + g exp[iC - (\F-23v)1) . (25)

If we treat the ‘S-integration as being in polar coordinates and perform

the angular portion of that integration, then the exponentials each give
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rice to a Bessel function according to the well known formula

21
j' dg exp (i x cos @) =21 J, (x) : (26)
o

Making use of this equation, we can rewrite Eq. (25) in the form

Z -
n\T,S) = 8—116_1(2 J" dv G2 J‘dc o R {1l - J,(\ fo) - I, (29 v o)
o (o]

t#[J, (AT +25v]| o) +3,(|2F-28v] o)1} . (27)

To proceed further, we make use of the formula®

\

o e l“(é+&"+éu)
j'dx «M J, (ax) = 2H g H

0 F(B+av-pp)

if Rev-1<Rep<g, and a~0 . (28)

Strictly speaking, this equation is not directly applicable to Eq. (27) since
in ovr case, p =8/3 and v =0 , so the condition Re p > Re v-1 is not
satisfied. There is also a problem of the divergence of the integral with 1
in place of Jo . Infact, however, because we are dealing with a difference
of factors, the g-integration in Eq. (27) is convergent. The divergence is
associated with the behavior of the integrand around o = 0 , for which
g~¥3 J, (0x) clearly leads to a divergence. However, the differences are
such thaé the quantity in the curly brackets in Eq. (27) goes as 02 in the
vicinity of 5 =0 , and so the actual dependence near o = 0 is g-2/3

This does not have a divergence. This means that we can use Eq. (28) to
evaluate Eq. (27) (with 1 replaced by J, (0 c)] , and by an argument based
on the principle of analytic continuation take the result to apply for the

parameters in Eq. (27). Thus we obtain the result that

-3 =
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mng,3) = s llo 2-8/3 % K2 j'dv G2 {-(\fP/3 - (29vP/3

+ & [M)? + 2(29v) (Af) cos ¢ + (29v)2 ]5/8

+ & [(M)?2 - 2(29v) (M) cos ¢ + (29v)2 P78} . (29)
Here ® denotes the angle between § and T .

Equation (29) represents the most general reduction of results we
can carry out without making some assumption regarding the distribution
of the refractive-index structure constant along the propagation path, i.e.,
the dependence of C,? on v ., In the next section, we consider the parti-
cular case corresponding to horizontal propagation for which C,® is constant,

independent of v

Reduction of 7(Af,8) for Horizontal Propagation

If we restrict attention to the case of horizontal propagation for which
C,? is constant, we can simplify Eq. (29) by taking GZ outside the
v-integration. We can then simplify the parametric dependence of the inte-
gral by making the variable of integration correspond to 28v/\f . If we
make this transformation and extract all possible parametric factors, we

obtain from Eq. (29)

/1
b L(-5/6) ., (AR b
A -8/3 2 3 /3
mt, ) )2 K o G of dx {1+
-#[1+2xcosg +x 18 -4 [1-2xcosg +x2]¥5} . (30)
Here we have utilized the quantity f, , which we call the transition image

frequency, to denote

£y =29z/n . (31) j
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At this point, it is interesting to seek to introduce the quantity
ro , wWhich measures the effect of wavefront distortion of conventional
imaging. r, corresponds to the practical upper limit imposed by atmos-
pheric turbulence on useful optics diameter for diffraction-limited imagery.l

For infinite plane wave propagation, r, is defined by the equation
6.88r,"5% = 2,91k z G2 . (32)

This allows us to write

8.16 , o L(-5/6) 6.88 ()%

mAT, ) 3 r(11/6) 2.91 29z

ro 52 1(f/1y,9)

__8.16 , o [(-5/6) 6.88 /f ¥ /297 ¥/3
T T rme) zoot (g) (——r ) /%, ¢)
8/ /3
= 6.88 <%>3(2iz>s 1(£/5,,4) (33)
o]

where

f/f
I(f/f,,9) = J‘ ARl &3 -#[1+2xcos¢ + x2]/6

0

-2l -2xcos¢+x2]5/3} A (34)

The evaluation of M(A\T,¥) reduces at this point to the evaluation
of I(f/fo »®) . In general, this integral can ornly be evaluated by numerical
techniques, which we have performed. Before presenting the numerical

results, it is appropriate to discuss the asymptotic evaluation of I(f/f,,0)

for f/fy >> 1 and for f/f; << 1 . We shall denote the asymptotic form by

I a{f/%,?) , understanding that the appropriate asymptotic form is to be

used in the regions f/f; <1 and f/f; =1 .




For f/f >> 1 , x in the integrana is everywhere very small, and

we can make the approximation

1 + 52 - & (1 + 2x cos ¢ + x?P/® - B (1 - 2x cos @ + x2p/8

~ 1+ 5734 f1+ (2xcos¢ + x?) + 5/6 liC)

cos ¢)2]

,E‘—l+5/6( 2xcos¢+x2)+s—-ul—/6——( 2x cos¢)2]

gx5/3—%x3+-15§x2c052¢ : (35)

Carrying out the integration is now trivial, and we get

&/3

Lpnli/5.9) = 3 () 1= 20 (2 (- cos® )

f

Tad B g e (36)

For f/fy << 1 , the value of the integrand in Eq. (34) is dominated
by the values for which x is very much greater than unity, and we can

make the approximation

1+ /2 - & (1 + 2x cos ¢ + x2)p/s -# (1 - 2x cos ¢ + xRp/6

1+ 52 - & B7[(1 + 2x1 cos ¢ + x2P/8 + (1 -2x™! cos¢ B xR2pEl
~ 1+ x5° -3 x5/3[1 + = 5/6 (2x™! cos ¢ + x'2)+£—)-(—/6) (2x1 cos¢)3_'

-2 )(5/3L1 + = 5/6 (-2x7 cos ¢ + x72) + L—M——L( 2x71 cos ¢)2]

0

2 /L2 1/ 2
1 c x + TR cos?® . (37)




Here again, carrying out the integration is trivial, and we get

£ Rt : (38)
We have written a computer program for the evaluation of

computer program is listed in Table I. 2, and the numerical results are

1
1
I(f/f,,®) , and comparison of this quantity with L, f/65.8) . The ]
E

given in Tablel. 3. As can be seen from these numerical results, I“" (f/l%,0)
is a very good approximation to I for all values of f/fy, when cos®¢ is
near unity, and is also a good approximation when cos®® is significantly

different from unity, if f> f, , or less than about 0.] %

E With these asymptotic forms, we see that Eq. (33) can be re-
.

written as X

( 6.8 (rf—:f/al"l -§<§—>1/3(1 -3 cofy) |, if <4

o)
:
(\%,3) ., (39) |
’ 9 \5/3 20 1/3 - ) ’
2.58 | — — (1 -1 cos?¢)|, if f2>
() [1-37 () (-4 cof)] b g
where
Ty
2’0 o~ Z

B T

The angle #, can be considered to characterize isoplanatism for
predetection compensation imaging over a horizontal path. We shall call

it the critical angle for predetection compensation imaging.

In the next section, we present a discussion of the significance of

our results,

== 7S
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Discussion of Results

If we substitute Eq. (39) into Eq. (24°), and that into Eq. (9b),

we obtain the basic result that

exp{ 6. 88 \fo)\) [ -2’(-2—)1 (1-% cosz¢)J} if f<f,

(Tpoc(?» = 1y (f) (41)

g

&/3 20 1/3
exp {-2.58 (00) b

i-l-'z—,i(—f—J (1-% cosz¢):”> if £f=21, .

Recalling definitions given previously, we note that To, (f) is the diffraction-

limited MTF of the aperture,

2
£ = ’;Z (31)
and
r
S = z: : (40)

@ is the angle between the direction to the reference source and the

orientation of the spatial frequency, T , of interest.

In considering the results in Eq. (41), we note first of all that for
f small compared to the transition frequency, f, , the MTF reduces to
T, (f) exp [ -6. 88 (f)\/ro)S/s] . If we had not used predetection compensation,
the well-known long exposure result is of the form T (f) exp [-3.44 (f\/r FRP] .
Thus we see that for low frequencies, the MTF is actually poorer than in
conventional imagery. This is apparently because for these low frequen-
cies, the wavefront distortion compensation we are using is inappropriate.
By using it, we are simply doubling the mean square wavefront error, be-
cause we are combining two independent sets of errors. This means that
in practice, we must have an f, small enough so that (£, )\/ro) is less
than unity so that the low frequencies are in a range where there is no
significant wavefront distortion, and doubling the atmospheric turbulence

effect will be of little consequence.
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In order to get f, small enough, we have to have an appropriately
small value for § . A bit of algebraic maripulation quickly shows that
the requirement that we make the transition frequency, f, , small enough
is equivalent to the requirement that we use a reference source at an angu-
lar distance which is less than the critical angle for predetection

compensation, M

For image frequency f greater than the transition frequency, £, ,
we see that the predetection compensation MTF is equal to the diffraction-
limited MTF, except for a factor of the order of exp [ -2.58 (9/8,F/3]
Obviously, the key to achieving a high predetection compensated MTF at
high image frequencies is to use a reference source at a displacement
angle ¢ which is less than the predetection compensation critical angle,

Jo

Fortunately, we get the same requirement, i.e., § <8, , for
good performance at both high and low image frequencies. Obviously, the
magnitude of ¥, is of fundamental importance, and it is interesting to
see what it is for various conditions. First of all, we note from Eq. (32)
that r, is proportional to 38/ ., Considering Eq. (40), it is thus appar-
ent that 5, is a function of wavelength, and also varies as 288, I we
combine Eq.'s (32) and (40), we get

2.9 5 2 L wa 2‘-3/5
(6758 2° ¥ = ¢2)

= 0,0923 »8/8 -8/s (CNz)-als 1 (42)
In Table I. 1, we present some representative values of the predetection
compensation critical angle, §, , ‘along with corresponding values for
the nominal angular resolution for uncompensated imagery, namely r, ,

where

5.42 VU5 p¥8  (C )5 . (43)
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Table 1.1

Dependence of ¢, and \A/r, For Horizontal Propagation
A= 0.5um
R =1 km R = 3 km R =10 km
CNa(m-2/3)
do Ay Jo Ay Jo Mg

(urad) (wrad) (wrad) (Lrad) (urad) (wrad)
1 x 10718 2.53 98. 7 0.437 190.8 0. 0637 O
3x 10734 5t22 47.9 0.900 92. 6 0. 1311 190.8
IEX¥ 10814 10.09 24,8 1. 74 47.9 0.253 98. 7
3x 10718 20.8 12, 04 3.58 23.3 0. 522 47.9
1 X 10718 40, 2 6.23 6.92 12,04 1. 009 24. 8
SRl 0 82.7 3802 14.27 5.84 2,07 12,04
I RIORS 159.9 1. 56 27.6 3.02 4, 02 6.23

It is apparent from these results that for horizontal propagation,
excluding short paths with relatively light turbulence, the critical angle,

J; , 1s less than the nominal long exposure resolution, This means

NADS
that in general, for horizontal propagation paths, predetection compensation
can only be utilized if a sels-referencing technique can be utilized. In gen-

eral, the distortion of a resolvable distinct reference source provides incor-

rect predetection compensation information for imaging of a target of interest,.

For vertical propagation, entirely independent calculations start-
ing at Eq. (29) need to be carried out with an appropriate vertical distri-

bution for the refractive-index structure constant, G? It is likely that
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in that case a simple representation involving an easily defined pre -
detection compensation critical angle, #, , and a transition frequency,
fy » such as we have found for horizontal propagation will not apply. We
intend to carry out an analysis of the vertical propagation case in a later
paper. For the moment, we remark that some insight into the vertical

propagation can be obtained from Table L. 1.

If we are to apply our horizontal results to the vertical propagation
case, we must assume some effective height for the turbulent atmosphere.
The corresponding value of G2 then follows from the fact that \/r, is
of the order of 5x 107 rad. If we assume an effective height of 1, 3, or
10 km's, the corresponding values of ¥, are of the order of 40, 14 ,
and 4 yrad. From this, it is apparent that unless the effective height is
of the order of 1 km or less, only self-referenced predetection compen-

sation can be utilized.
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Table 1.2

Computer Program Listing for Evaluation of I(f/f,,¢) and
)6 (f/% ,¢) . The computer language is BASIC.

BRI 4%, ARCE]

ST fn =ty
.. .. S B ce
~

LT..‘ "‘":vv,’.'.".'_l..u.'l IR 2 B TedFtrTYY ".,'.','-""TTTT
i SRR

e [ L

WeT So-a,sn

L—”" f::/(

157 B S 2 3

LET @g=22/27
BiEelR= 5/

e
e e B

IF C==]fo AQTY 47C

DA h:ol;oc;-f‘\:-/110:106307;-r’309111'107
LT7T Cl= £NF (o"%2, 14]500585%()

LTT CP=|-Cl=01/3

FA™ "=1 TO 5

DoygT

premcim -
-

BT UEING AB3UPMI =13Ck325" DEG, "
FO™ 7=1 TN &
n"I.]’r

LTT D=5T-a4
LET 1=7

LET “=|T-72
ROSUT 470

OO =3IRD
SOIEEIFRSHETI0S 0

LET MswidD

f‘,O‘CT’D I2%alal

I W)

CET =H+D

SO08EE - sRn

EETE T3 =41

LET I=T1+(C114+4%x12+12)%N/R
[T =T G

I ¥<E-Ga SoTD A9%

IR %128 60T0 4f7%

IF 3> 2070  45¢%

ET J=P14MtDox( | =N2x1 2 %C0)

I

RCTD 477

IV

o




Table 2 - Continued

26AVLET JsHL(1-23xG2/¥121)

L7/ PTIAT USIMS TSIV I/MI I3/
475 1T L2=3 2NI4T

. L2

AR5 LET B=1axD

AOR =N 1)

SN ENTO. S0A

AEG TLET ol - Rt U+ e

612 LET H1=F

A28 IF ¥=& CZOTN nNL”

53E LETGEL =8 AT ()0

AP LT M=148%x"%Cl+" T

GER LET M=~ B (M]1+ ARS (KH)TO) 414D
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Comgputer Printout for I(f/f,,¢) and I""(f/fo,¢) . The

output is generated by the program listed in Table 2.
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CHAPTER 1I

A New Model for the Vertical Distribution

of the Optical Strength of Turbulence in

the Atmosphere




Presentation

It is the objective of this chapter to present a plausible model for
the vertical distribution of the refractive-index structure constant G2 (h)
as a function of altitude, h , based on the most current available atmos-
pheric turbulence data. The actual distribution is, of course, stochastic,
and very likely varies to some extent with geographic location. However,
our objective here is merely to obtain a reasonable model which can be
used to carry out order -of-magnitude type calculations of the optical
effects of atmospheric turbulence. With this objective in mind, we rec-
ognize that not only is it not possible for us to retain the details of fine
scale dependence of G2 on h which might be observed at any instant
of time, but also it is neither appropriate nor significant to do su. The
detailed atmospheric physics which can result in order-of-magnitude
changes in C® when h changes less than 1 km, at some high altitude,
is obviously of potential interest to the atmospheric physicist who wishes
to study the mechanism by which refractive-index variations are generated
in the atmosphere. However, for those of us who merely wish to carry
out optical effects calculations, since the weighting factors are relatively
slowly and smoothly varying factors of position along the propagation path,
it is only necessary to develop an estimate of the average value of G2
in each altitude regime. Although actual values of G? versus altitude,
h , may show spikes, as depicted in Fig. IL 1, it is entirely permissible
for us to smooth the data so long as we retain the correct integrated value

of G in each altitude regime.

The absence of direct optical data from which the distribution of
G® versus h could be developed forces us to rely on thermal probe
measurements of the temperature structure constant, G2 , from which
the refractive-index structure constant, Cy® . can be calculated. For
this purpose, we have found it convenient to utilize the balloon flight data

gathered by Bufton! for the altitude regime between 500 m and 20, 000 m,
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and the airplane flight data of Koprov and Tsvang?® for the altitude regime
between 50 m and 500 m. (It is, in fact, the recent availability of Bufton's
high altitude data that makes the development of this new turbulence distri-

bution model practical and appropriate. )

The Koprov and Tsvang data, because it represents level flight at
each altitude, gives a reasonable average value and so relatively little
data smoothing is required. Their data, representing the average of seven
day time flights, and the average of five night time flights, is shown in

FigIL 2. The solid lines show a fit to the data according to the equations

C2(h) 6.5x 1072% h? +, 50<h< 500 m (day time) (la)

jﬁ.ox 10714 h"¥3 | 50<h< 100m

G2 (h) (night time) (1b)

{ 1.5 X 10-16 , 100 < h< 500m

~

where G2 1is in units of m~%® and h is in units of m

The balloon flight data of Bufton represents four night time flights.
Using the integrated measured values® of C2 (derived from G2 ) and
smoothing the data to suppress sharp altitude dependence, we have calcu-
lated the average value of C?2 in 1 km altitude increments centered at
l km, 2 km, 3 km, etc., up to 20 km, for each of the four flights. The

results are shown in Table I 1, along with the average value for all four

flights. These values are depicted in Fig, II, 3.

Rather than slavishly follow the detailed variations of these data
points, we have reasoned that the sharp variations we see in Fig. II. 3 are
the result of only having four data sets to average over. We assume that ]
the real dependence in a statistical average sense is an altitude regime

dependence, and have therefore utilized the much smoother curve shown




to approximate what we believe the data says is the actual statistical

average altitude dependence. The corresponding adjusted set of values

for G?® is listed in Table 1L 2.

We consider Eq.'s (la and lb) and the data in Table II, 2 to repre-
sent our model for the altitude dependence of the refractive-index

structure constant,

It is interesting to note that this model bears a qualitatively
striking relationship to that proposed by Hufnagel*, particularly in terms
of the excess turbulence in the 10 km to 15 km altitude range, although the
values we have appear to be smaller than those of Hufnagel's model. How-
ever, this may merely be a consequence of our decision to smooth over
altitude. (It is difficult to be more quantitative in the comparison, be-
cause of the problem of estimating the altitude range for the disturbed

layers in Hufnagel's model. )

As a check on our model for G? , we have calculated the value
of the critical coherence length, r, , and the log-amplitude variance,
q£2 , for A =0.55um and vertical propagation, according to the equations
2.91 ,27T\2 3 V-8
= = = , 2
ry {6.88(0 [ dh G2() } )
Path
and
2 0.56 /21 /e he/8 2 4
52 = 0. h) [ dn G2(h) . ()
Path

We calculate that r, should equal 0.095 m in the day time and 0.100 m

at night., Calculations of czz give essentially the same result for both

day and night, namely 0.116 neper® . The night time r, resultis to be
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compared with measured values® centered around 0.114 m . This agree-

ment is excellent, The cf value is to be compared with measurements®
near the zenith ¢ ving values of .050 =, 019 nepers® . The agreement is
hardly outstanding, but seems reasonable considering the uncertainties of

the quantities involved and of the limited size of the samples available.
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Table II.1

Bufton's Flight Data -- Smoothed and averaged

The data shown here is based on smoothing the raw data over 1000 m
altitude increments. This is accomplished by using the altitude integrated

measured values of G2 ., We plot this data, passing a reasonably smooth
curve through the results, and then determine the change in the integrated
value, as represented by the curve, over 1000 m increments. Each 1000 m
interval is centered at an exact number of km altitude. Thus the intervals
are 0.5 km to 1.5 km, called the 1 km altitude interval, 1.5 km to 2. 5 km),
called the 2 km altitude interval, etc. A single average value of C? for
each interval is then calculated from the change in the integrated value. ;
f
| 3
Alt, (km) Refractive-Index Structure Constant, G2(h) x 10, (m-2/3) :
| Flt. #4 Flt. #6 Flt. #7 Flt. #9 | Avg. (4 Flts.)
1 0.47 | 0.35 0. 39 0. 65 0.465 .
2 | o5 | 1.90 1. 74 1.25 1.260 i
! ' 3
3 0.19 | 0. 75 0. 76 0.40 0.525 2
] 4 0.2 | 0.14 1. 57 0.76 0. 675 ;
* S ; 0. 87 0.10 0.20 0.335 i
6 0.27 0.23 0. 00 0. 26 0. 190 1
7 0.31 | 0.24 0. 00 0.33 0.220 %
1
8 0. 38 0.21 0.00 0.41 0.250 '
9 0. 46 0.17 0. 00 0.57 0. 300
10 0. 55 0.14 0. 60 0.78 0.518
11 0. 50 0.13 0.01 1.00 0.410
12 0. 42 0.13 0.18 0.67 0. 350 !
13 0. 38 0. 50 0. 40 0.47 0.438
14 0. 26 1.27 0.18 0. 34 0.513 %
| §
15 0.23 0.27 0.13 0.26 0.223 !
16 0. 19 0. 10 0.11 0.21 0.153
17 0. 22 0. 08 0. 08 0.13 0.128 ;
18 0. 20 0.02 0. 02 0.12 0. 090
19 0.20 0.00 0. 04 0.06 0.075 |
|
20 0.20 0. 00 0.07 0. 05 0.080
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Table 1II,2

Bufton's Flight Data -- Adjusted Averages

In plotting in Fig. II. 3 the average flight data from Table IL 1, we have
noted certain fa rly obvious anomalies. We believe these anomalies are
artifacts due to the limited statistical sample, i.e., the use of data from
only four flights. These anomalies have been eliminated in the adjusted
averages by some fairly minor redistribution of values of G2 . The
adjusted values shown in this table correspond to the curve shown in Fig. IL 3.
An asterisk (*¥) indicates an adjusted value that deviates from the average
value in Table IL 1.

Altitude Refractive-Index Structure Constant
h, (km) C2 x 10 (m=-23)

1 0. 465

2 1.260

3 0.675 *
4 0. 525 *
5 0. 335

6 0. 190

7 0. 220

8 0. 250

9 0. 300
10 0. 395 *
11 0.460 *
12 0.510 *
13 0.475 *
14 0. 385 *
15 0. 223
16 0.153
17 0.128
18 0. 090
19 0.075
20 0. 080
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Figure II. 1. Bufton's'! Thermal Probe Data, Flight #9

The values of C? computed from the thermal probe
data are shown without any altitude smoothing, The
spikiness of the data is so severe as to make use of
the data for calculation of atmospheric optical effects
rather difficult.
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Figure II.2. Low Altitude Thermal Probe Measurement of
the Refractive-Index Structure Constant. The
data is extracted from the airplane flight data
of Koprov and Tsvang. 2
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CHAPTER 1II

Differential Angle of Arrival:

Theory, Evaluation, and Measurement Feasibility




Introduction

In this chapter, we are concerned with the problem of developing
theoretical results for the mean-square difference in angle-of-arrival of
light seen through two small but finite apertures viewing the same point
source. The two apertures are separated by a distance which is a few
times the diameter of each aperture. We wish to calculate the magnitude

of the mean-square angle difference as a function of the separation,

Our interest in this problem is related to an experimental problem,
Ideally, we would like to make measurements of the phase difference be-
tween the two apertures when viewing a monochromatic point source (i.e.,
a laser). This would give us a direct handle on measurement of the phase
structure function, which because of its relationship to the atmospheric
turbulence limited imaging problem, is of direct interest to us. For
measurements of propagation paths between two points on the ground,
it is a practical matter to undertake mean-square phase difference meas-
urements. However, when the source is off the ground, as it must be if
we are to be able to make measurements of propagation over non-horizontal
paths, making mean-square phase difference measurements is not practical,
For such a measurement, the receiver will have to track the source and
any angular tracking error (with a component in the plane defined by the
line-of-sight and the line-of-separation of the two apertures) will produce
a phase difference. This phase difference will appear to be the same as
a propagation-in.'uced phase difference. Unless the tracking is virtually

perfect, the measurement results will be dominated by this tracking error,

leading to basically spurious conclusions.

In order to avoid this measurement problem and yet get a handle
on the measurement of phase differences, one's attention is then naturally
directed to the possibilities offered by making angle-of-arrival measure-

ments. The angle of arrival is basically the first derivative of the phase

- 47 -
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difference and we should be able to extract phase difference statistics

information from angle-of-arrival statistics,

Actually, the basic angle-of-arrival measurements are plagued
by the same tracking error problem as is the phase-difference measure-
ments, Tracking error effects are potentially indistinguishable from
propagation-induced angle-of-arrival fluctuations. However, by working
with the difference in angle-of-arrival at two separated apertures mounted
on the same tracking assembly, and calculating the mean-square value of
this difference (rather than the covariance of angle-of-arrival at the two
apertures, for example), we avoid any effect due to tracking error. The
tracking error is the same for the two apertures, and its contribution
drops out of the difference of angle-of-arrival at the two apertures. Hence
our interest in studying the expected value of the mean-square difference
of angle-of-arrival at two apertures as a function of the separation of the
apertures. This problem provides the theoretical framework for a prac-
tical measurement of effects related to phase distortion over a non-

horizontal propagation path,

In the next section, we define the measurement problem in terms
of the applicable parame«ters and then set up the mathematical formulation
of the problem in a tractable form. In the section following that, we carry
out the necessary analysis to reduce our formulation to a two-dimensional
definite integral which can be evaluated on a digital computer. In the
section after that, we present the computer evaluation procedure and
results. The final section presents a brief discussion of these results

and their implication in terms of required angular rneasurement precision,

We have also included an appendix which briefly sets forth an
alteruate approach to this evaluation problem based on the assumption
that the apertures are very small and that the angle-of-arrival can be
considered to be simply the derivative of the phase. We show that this

approach runs into divergence difficulties which can be lifted by introduction




of the inner scale of turbulence. We argue, however, that this divergence
is more properly lifted by the finite size of the measurement aperture,
and that a theory which does not take this into account should not be con-

sidered applicable for finite sized apertures.

Problem Definition and Formulation

We have previously showrt that over a circular region of diameter
D , a distorted wavefront, represented by the random function ¢G{') , can
be conveniently decomposed into a set of terms each of which represents
some geometric aspect of the wavefront distortion. In order to accomplish
this decomposition, a set of orthonormal (two-dimensional polynomial)
functions, F1 GE) » were defined. These functions were directly related
to the Zernike polynomials. Of particular interest to us here are the two
functions which are related to tilt along the two orthogonal component
directions in the X-plane. If we denote the two components of x by (x,v)

then these two functions are

th(;) = (%,,)éx ; and (%)ﬁy 5 (1)

The coefficient a,,,, is obtained from the equation

3y, = [dXWE D) F,, @ox |, (2)

where the integration is over the infinite ?{-plane with the actual region

of integration limited by the circular aperture function W(x, D) , defined

by the equation

1 if |X] < D
W(x, D) = ! (3)

-

0 if [x|}§D

In order to extract the tilt angle, o from 3, » we need a scaling

factor., We obtain this factor by noting that when ¢ (%) is replaced by x

- 49 .




(or y ), we expect the slope to be unity, and by noting that the slope
associated with the phase function, ¢Gc) , should be calculated from

the isophase height function (\/2m) ¢ (X) . Since

[ WD { (22 x)x= G2 F (4)

it follows that the normalization factor is ()‘/21'7)(TTD4'/64)-i . This means
that the tilt angle a associated with the random phase function #(x) over

a circular aperture of diameter D is

S 2"_“ (%4 [ d% W(, D) Fy,, () o) . (5)

The experimental set-up whose results we wish to analyze con-
cerns a pair of circular apertures each of diameter D , with their centers
at —;‘1 and 322 . The difference of the angle-of-arrival components along
the x-axis, as seen through these two apertures, can be written in accord-
ance with Eq. 's (1) and (5) as

arcos =g [ FWE D) x (96 +%) - 0Get D] (©)

We can write the square of q,-g as the product of two integrals, and
that as a double integral over % and %’ . Then by taking advantage of
the fact that we can commute the processes of integration and ensemble
averaging (which we denote by the angle brackets, ( ) ), we see that we
can write the mean-square angle-of-arrival x-component difference as

2
(log -0 ) = (:g&> [[ d% dx* W(%, D) W(x*, D) x x*

X ([6+x) - 005 +x)[0 (x5 +%) - 8GR +X]) . (7)

This equation represents our basic problem formulation. In the next sec-
tion we shall turn our attention to the reduction of this formulation to a

numerically evaluatable result,

S 508-
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Formulation Reduction

At this point, it is convenient to make the change of variables

from X , X’ to the difference and sum variables, u , V , where
1> Aaep il (8)
v o= x+x) . (9)

The ensemble average in Eq. (7) can now be written in terms of the four
product terms expressed as phase covariances, as C¢ﬁ§) - C¢(_'x..,-_:21 + 1)
- C¢(3?3-321 -u) + C¢ @) . However, by adding and subtracting twice the
pPhase variance and appropriately grouping terms, making use of the fact
that the structure function for a stationary random variable is twice the
difference of variance and covariance, we can more conveniently rewrite
the ensemble average in Eq. (7) in terms of this phase -structure function,
— — —
as ¥ by (%, - %, +1) t 0,05 -% -1) - 5, @) .
-
If we introduce the vector S to represent the center-tc-center

separation of the two apertures, i.e.,

7 XB = x1 ’ (10)
then we can rewrite Eq. (7) as

32 A

(o -0p)?) = (ﬂa Dj’ ff du dv (v + i?i)x ~ -4 ), w(§,'+ia’, D) W(v-}1, D)

X [BBp(S+1) +48,(S - W) - 5y(@)] . (11)
In the above, the subscript x is used to denote that only the component along
the x-axis is to be considered,

If we now introduce the function K(, D) , where

K@, D) = [ dV (3 7), (-43), W(v+43, D) W(-44, D) (12)

then we can rewrite Eq. (11) as

-51 -




(loy - ag)) = (—T%;ﬁ)a [ 6 K, D) (9058 + D) +885(5 - T - 5,1 . (13)

We now turn our attention to carrying out the two-dimensional integral

in Eq. (12).

To carry out the integral in Eq. (12), it is convenient to represent
the vector Vv by the two components (p,q) , where the p-axis is taken to
be parallel to 3 . We shall let 8 denote the angle between the x-axis

and u . We can then write
ﬁ'ii'ﬁ)x = pcosp-gqsingxtgpucosg . (14)

The integration limits imposed by the two W-functions in Eq. (12) are such

that we can now write

(o~u)y/2 + [y 2P~ (e 2)3-11,3
D =
KU, D) =2 [ dp J dq [p® cos® § - 2pq cos @ sin g + q® sin® @
2 -[ (Dfe‘)a-(;:-oc/-?):"]l/a

- (#u)® cos® 8 ] . (15)

By regrouping and adding and subtracting various quantities, this can be

rewritten as

(o-uy2 +[{v 2P= (4w a)ajm
K(u,D) = 2 u[ dp ‘J‘ dgq [(p +#u)® cos® g - (p+4u)u cos® ©

[ oR3=pum3] "

-2(p+pu)qcos Hsin® + qucosgsind +q? sin® 8 (16)

It is convenient here to make a change of variable so that (p +#u) is

replaced by p . With this change of variable, we can rewrite Eq. (16) as

_B572s"
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1
+ [(o/a)3-p2]"73

0/3
K@,D) = 2 r dp J‘ dq (p® cos® @ - pucos® § - 2 pq cos § sin @
i = [(t’/i?)a-pg]l/a
+ qu cos @ sin 8 + g2 sin® 9) . (17)

Carrying out the q-integration is a trivial process. We obtain

K(,D) = 4 j‘/a dp {p® [(} D)z-pzjé cos® ¢ - p[(p D)z-pz]i cos? g

/3

+ 4 [@DP-p2]* sin® g} . (18)

Now if we extract a factor of (§ D)* from inside the integral in
Eq. (18) and make a further change of the variable of integration, replacing

p/(& D) by p , we get

K@, D) = 4 (* D)* Jl‘ dp {p® (l—pz)é cos? § - Zp(l-ps)é(u/D) cos? g
wo

+ 5 (1-p?)? sin® g} . (19)

The integrations in Eq. (19) can be carried out in terms of the formulas

given by Dwight?, We can write

K@, D) = ipt ({% cos? (u/D) +[1 - (u/D)Q]é[-% (u/D)® + %(u/D)]} cos®
-2[1-(u/D) ]é[-% (u/D)2 + 1] (u/D) cos® ¢

+{ % cost(u/D)+[1 - (u/DP ]é [ﬁ. (u/D)a-z% (u/D)]} sin? 0) . (20)

This can be rewritten as :

K[, D) = & D“(—écos‘l (u/D) + [ 1- (u/Dp ]5{% (u/D)? - & (u/D)]

R bty e Bl

+[% (a/D)® - 4 (a/D)] {1 - (u/D)P]¥ cos? 6 ) ) (21)

.
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If we now combine Eq.'s (13) and (21), we obtain

(o -z = (2] 2 [l (beos™ (w/ D) + [1- (/PP IR (Ly 0/ DP
- & (u/D)] + [4 (/DP-4 (a/D)] cos? o1 (k2 (5 +

+ §ﬁ¢('s' -d) -5, . (22)

It will simplify our results if we now make the replacement

J =3S/D . (23)

and after bringing in a factor of D™ from outside the integral, make a

change of variables, replacing u/D by u . This allows us to rewrite

Eq. (22) as
4
(lg -az)Py = \/ﬁ) (%)2 J"dﬁ { cosHu) + (l-u‘?)ﬁ [(& v -a% u)

+ (3 u? - 1u) cos? 9]]{ﬁﬁ¢[D(3 +1)]

+ §,a¢[D(;5 - )] - Dy (Du)} g (24)

At this point, we recall that we define g as the angle between b
and the x-axis. Operationally, the x-axis is defined by the fact that the
component of angle-of-arrival that we are measuring lies in the x, z-plane.
We will pick this component so that the x-axis makes an angle § with the
aperture separation vector _é (and with J ) . This means that the angle

between u and J is o + ¢ , so that we can write

| +4| = ([ 2 ucos (g +¥)]? +[usin (8 + )P ]5

[Ja + 2./u cos (9+¢)+ua]§ s (25)
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Taking note of the fact that the phase-structure function, ,B¢ , is dependent

on only the magnitude of its argument, we see that we can rewrite Eq. (24)

as

2n

2 1
((a, -,y = (%)4 (-I)S—) OJ' deoj' udu {%cos'l(u) + (l-u‘?)% [gla ua'BSZ u)

+ ($u® - $u)cos? 61} (ﬁ_% {D[f? + 2u cos (6 + ¢)+u3]é}

+ %_B¢ {D[of2 - 2/u cos (9 + y)t u® ]‘b}-ﬁ¢(Du) > . (26)

Eq. (26) is the most general expression we can write for the mean-square
angle-of-arrival difference. Its further evaluation can be carried out numer -

ically as soon as we have an expression for the phase structure function, By

To proceed further in our evaluation, we introduce the approximation
that the phase structure function can be accurately represented by the wave

structure function. This allows us to write

By(x) ~ 6.88 (x/1,)6/° , @27)

where 1, is a length representative of the magnitude of the wavefront

distortion.® If we use this approximation in Eq. (26), we obtain

\ / /i 2n 1
(lay -ag)? ) = 3. 44 (%)4 (%)13(; >anfde fodu{zcos™u)
0

Vo
i (l-ue)% [gla ud- Q_.i u) + (3 u®-4 u) cos? g ]}

X {[#2- 2u cos (8+¢)+ W@ P8+ [#2-2/u cos (8 +y)+ u?)o/8 - 2u/3)
(28)

In this form our expression is directly suitable for computer evaluation.
We take up the matter of this numerical evaluation and presentation of

results in the next section.




Numerical Evaluation

To proceed beyond Eq. (28), it is convenient to introduce the quan-

tity IGs,y) , which we define by the equation

2m N
I(0,4) = (1—:>2 O'J‘ de oj duu{cos'1 (u)

4 (1-u? )ﬁ((l—lz us - %u) + (3 ue-1u) cos®e ]}

X ([ +2 pucos (g+y) + B /6 + [ 2 -20u cos (B+y) + u? J5/8 - 2 u5°

(29)

This allows us to rewrite Eq. (28) in the form

3. 44 13, )\ §/3
(loy-a)) = =3 (‘12\)—) (';o—) I(,%) .

This will serve as our final result, for all practical purposes. However,
it is quite interesting to take note of the expression for mean square angle
of arrival variation at a single aperture, (g?®) , as given in Appendix B,

Eq. (B-2), and recognize that we could rewrite Eq. (30) as

(log -%P)Y =~ (®) Iby) . (31)

Since o is a two-component tilt, i.e., it includes both x and y components
ir the mean square, while o -0 represents the diffcrence of two single
component tilts, it would be necessary for @ and g, to be anti-correlated
for I(s,¥) tohave a value greater than unity, and in no case could it be
greater than two. In fact, we find it never gets to be quite as large as unity,
The numerical evaluation of I(/,y) is a straightforward computer program-
ming problem. We have prepared a program to carry out these calculations.
The program is listed in Table IIL 1, and the results for I(/,0) and I({/,#m)

are given in Table III. 2 for S=1 to 20 in steps of # . As can be seen from

=y




these results, for ¢ = 0 , I has values in the range of 0. 5 to 0. 75,

approximately, while for ¥ =#n , the values are somewhat smaller.

Discussion of Results

Our basic interest in all of this work has been in assessing the
practicality of using mean square difference in angle of arrival measure-
ments o determine the optical strength of turbulence along the propagation
path, or more succintly put, to determine r, . The critical question is
how much larger ((o, -a,)®) is expected to be than our measurement
precision. From Eq. (30) and the fact that I(y/,{) has a value of the
order of 0.5 , we see that the mean square measurement value, which

we call the signal squared, should be

1/3 6/3
(SigP ~ 3.44 ()\, (X)

I} D) (32)

Our equipment will make measurements of single ax’s angle of arrival with
some rms uncertainty, 66 . The mean square variability in measure-
ment of ((o -@,)2) , which is our noise squared,is just the sum of the

error for N and for ¢ . Thus we can write for the noise,

(Noise)?2 o 2 (88)2 i (33)

The rms error in determination of r, , which we denote by &r, , can

be determined from the equation

(34)

3.44 AL/ . )\ 83
Q Q 2 =1 55 —
(Sig + Noise)® =~ 2 (D) (r°+6ro>

Solving for 4r, from Eq.'s (32), (33), and (34), using 6ry << 1, ,

we get
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§ry 2.87 69

5/8

~ RY;
%o (5 &)

We see, for example, that if we work at X = 0.633 um , use aperture
diameters of D=0.1m , and if ry, 0.1 m , (for which rms angle of
arrival variation is (3.44/n2)/2(A/D)}/8 (\/r,/® = 3. 74 yrad ), then we
can achieve a measurement precision 6ry /ry ~4.53 X 10° §8 . To get

a 10% accuracy, the rms es~or §0 would have to be no greater than 0,22
urad = 0.045 arc seconds. If %6 0.1 arc seconds, then §r, /ro would
be of the order of 22%. If the propagation path were such that r, were
0.5 m (for which the rms angle of arrival variation is 6. 66 yrad), then
we would have §ry/r, ~ 2.54 X 10° 59 . To get a 10% accuracy, the
rms error in §6 would have to be no greater than 0.39 yrad = 0,081 arc

seconds.

The feasibility of the experiment obviously depends critically on
our ability to select propagation paths for which r, will be reasonably

small, and on our ability to achieve a small enough value of 69 .

If we can reliably obtain 68 ~ 0.1 arc seconds, it should be possible

to obtain useful measurement results. The basis for the data reduction

of any such results is provided by Eq. (30), and the data in Table III. 2,

(35)

deicm
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APPENDIX A of Chapter III

An alternate approach to the problem of treating angle-of-arrival
statistics is to use the derivative of the phase function as a measure of
the angle of arrival. Quite obviously, the derivative represents the wave-
front tilt in a region of zero extent, and at least nominally there should
be no difficulty in utilizing such an approach. We shall see, however,
that this approach involves us in a divergence problem. With this formu-

lation, the divergence is lifted by recourse to the inner scale of turbulence,
providing smoothing over what otherwise would be a cusp in the statistics,
i.e., x¥° has icuspat x=0 . Inan experiment, the smoothing would
be provided by the finite size of the aperture diameter D , and results
obtained using the derivative approach will depend on the inner scale of

turbulence £, , where they ought to show dependence on D .
Using the derivative, we can write for the x-component of the local

angle-of-arrival at x ,

i () 2ol (A-1)

so that the difference in x-components of the local angle-of-arrival at

- - .
X, and X, can be written as

L ~ A d d
Qg "% < (‘2;) [—a—xl 0 (%) - By ¢G'<a)] . (A-2)
The mean square difference can then be written as
~ & AN\° 9 ) ) \
- 2\ = [ = . N 22 ‘.
(G - &) =(37) ¢ [5G 3?0 | 3n - ¢ G

Yol oe -5
] ax;w;’)]_’jﬁj
*3

3 1d ) . (A-3)
=%

(This rather unusual notation introducing 321’ and ;:' is necessary so that

when we carry out the multiplication and rearrange the terms, we can tell
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which differentiation goes with which phase function. ) Carrying out the

multiplication, rearranging terms, and interchanging the order «f ensemble

averaging and differentiation, we obtain

_. (G -5P) = (&) (o, 3y @GRIOED) -2 2. 0GP G

L LT p L)
s ,<¢(§a>¢r>>+xa  (BG) 8 GED) |

4

(A-4)

!

%
%a

The ensemble averages in Eq. (A-4) can be recognized as the phase
covariance function. By adding-and-subtracting the phase variance, we can

obtain the phase structure function, so that Eq. (A-4) can be rewritten as

o H BRSNS ) 2 3
<(°"-°9)2>_(2n> [ = ax1 ¢ ﬁaxia .Br
B '—"

x2=§

We now note that if we introduce appropriate sum and difference coordinates,

and hold the sum constant, then

2 9 == iz_
axi ax’ .B¢ (;E’ x’) auxz -3¢ (I;) ) (A'6)
where U = ?c, -;3 » and u, denotes the x-component of U . This means

T T e ————

that we can rewrite Eq. (A-5) as

where

S =%-% . (A-8)
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If we substitute the approximate form for the phase structure
from Eq. (27) of the main text, the nature of our divergence problem

becomes manifest. We obtain

2
(G - G)7)= (-Ziﬂ) 6.88 5,5/ {2 (52452)77° (§ 5245,

d 3\~ 2 ’
-[& (5724 PG 54 57 [ } - (A-9)
S/=0
y

The second group of terms in Eq. (A-9) is clearly divergent when S° is
set equal to zero. We believe that the first group of terms accurately
represents the _é-dependence of the mean square difference of the
x-component of angle-of-arrival, but to get any use out of the result, we
must find a way of renormalizing the divergence in Eq. (A-9). This re-
normalization can be provided by considering that Eq. (27) is only valid
for values of x greater than or equal to the inner scale of turbulence f .
We argue that more properly the divergent term in Eq. (A-9) should be
represented by the derivative evaluated at {, rather than at zero. This
then leads to a finite term of the order of £,72/2 in place of the divergent
term, and a result similar to our exact one obtained in the main text, but
with the role of the aperture diameter D filled by the inner scale of tur-
bulence, 4, . Since for any practical experiment we will make D greater
than g, , we conclude that the applicable renormalization would involve
D rather than 4, , with the accurate result being that obtained in the
main text using Eq. (2) to obtain the tilt rather than the derivative pro-

cedure of Eq. (A-1) in this appendix.

——— -




APPENDIX B of Chapter 111

It is necessary in the text to reference our mean square difference
in angle-of-arrival results to the mean square angular variation for meas-
urement on a single aperture. This calculation of the mean square angular
variaton has been carried out in reference 1, but without normalization.

In this appendix, we shall use those results and only concern ourselves

with the normalization.,

If we let a, and a, denote the x and y components of tilt cor-

responding to a,,, defined in Eq. (2), then from Eq. (7.8a) of reference 1*,

we have

((a,F + (a,)?) = 0.883 (17 I?) (D/r P/ . (B-1)

As pointed out in the discussion just after Eq. (4) in the text of this report,
a factor of (A/2n)(m D*/64)™¥2 is required to convert the a,,,, coefficient
to an angle-of-arrival coefficient g . Thus the mean square angle-of-arrival

fluctuation for a single aperture of diameter D , summing the two com-

ponents, should be

(a®y = ((o? + (a)7)

(%;)2 (ﬂ",‘;) ((a,P + (3, )

= 1027 298 (A A (B-2)

* There is a factor of 1m D® missing from the right-hand-side of Eq.'s
(7.8a, b, and c) of reference 1. This can be traced back to a failure to
pick up a factor of TR2 in solving Eq. (4.4°) to obtain Eq.'s (4. 6a, b,

and c) in that paper.
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Table 1III. 1

Computer Program Listing
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17
17
19.
1%,
19.
12.
2% 7

* o
JANAJIA2ARINDRIANDADRIARVD QINJIA N AQAIANAAIAINDTIN N

Table
Calculated Values

for I(os, )

I(s,0)

+4.50%7 7]
+.=;o 4.':3”.-’7‘1
+5.7278=7]
+heDLET=T ]
+heBTER=r
+AeRUAT ]
+R. 77T =%1
+6. 0 RT =G
+hH e QAT T]
+7 4 70ART=7]
+7.7707 =]
+7e1]%7=m]
+7e 17T -]
+7.2007-7]
+7.20]1 =]
+7 P27 =]
+7.191T=11
+7.1%°T-7]
+7.1735=-7]
+7.130%=-7]
+7e126%=3]
+7.177Z=0]
+7e7240% =01
+7.7282=71
+6.09RT=7]
+he Q34E-7]
+hHeROAT=N]
+He8435-71
+6. 708E=-71
+he73c =]
+5.685%8-]
+5.A15E=2]
+he 5A2T=7]
+he 802N =2]
+6.434F=7]
+fRhe JAPZT-M]
+£. 20 -]
+6.203%E=-7]
+5. 1320=21

I11.2

+d. 801 T=r]
+0e 3T
+5. 4 NT -]
+R, P17 7=
+5e2425=7]
+S . ST =]
+B g R
+5.4 3% T
+5.72%T =7
+5.7%RR=-7]
+5.710%=r]
+5.%47%7<21]
+5.9%AMT. =]
+5. 7478501
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+5.87/M-m]
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+5.%27%2=71
+5.R81AE=7]
+5.7755=-721
+5.7475=01
+5.718=2]

T+R AT3R-G]

+5.A12%=01
+5.5%4% -]
+8.823%=-01
+5e4%4E=-7]
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+5.361F=-]
+5.311R=01
+5.249%-72]
+5. 14T =71
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